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Ahtract. A phenomenological, general relativistic theory of dissipative elastic solids whose 
equations form a hyperbolic system is proposed. The non-stationary transport equations 
for dissipative fluxes containing new cross-effect terms, as required by compatibility with 
irreversible thermodynamics, have been adopted. As opposed to some conventional 
theories which are parabolic and predict instantaneous propagation of wavefronts, the 
theory formulated, consisting of 14 partial differential equations (in the case of special 
relativity), of total order 17, is hyperbolic and predicts, for all existing propagation modes, 
finite front speeds. The complete system of special relativistic propagation modes of an 
elastic solid is determined from the linearised equations. There are four mutually distinct 
non-trivial propagation modes, two for longitudinal waves and two for transverse waves. If 
the rigidity modulus decreases to zero one obtains as a special case the normal modes for 
fluid according to the theory of Muller and Israel. Weber’s equation is briefly discussed too. 

1. Introduction 

A clear review of the reasons for the development of relativistic elasticity has been given 
by Hernandez (1970): ‘By far, most of the past work in relativity has been concerned 
with either the vacuum or fluid-type materials. Yet there are several reasons why 
elasticity theory, and more generally, non-fluid theories should be well understood. 
( a )  Elastic bodies do exist. Even though relativistic effects are small, the theory should 
still allow for these solutions. ( 6 )  Under ‘abnormal’ conditions, matter requiring 
relativistic description may possess non-fluid properties. For example Misner (1968) 
has pointed out that in early stages of big-bang cosmology, for temperatures of 
105-10’0 K, the collisionless neutrino radiation possesses properties similar to those of 
an elastic solid. It is also possible that the superdense materials of the even earlier stages 
of the big-bang model or the neutron star interiors might possess non-fluid properties. 
(c) Static non-fluid bodies can be aspherical (in contrast to fluid bodies) and hence can 
be of interest in studying aspherical effects in general relativity. For example, only 
non-fluid bodies can serve as sources for the static axisymmetric Weyl metria.’ 

For current terrestrial physics, the theory of methods for measurement and produc- 
tion of gravitational waves seems to be of importance. An elastic body constitutes the 
most simple antenna for reception of gravitational radiation (see, e.g., Papapetrou 1972 
or Dyson 1969). The elastic vibrations generated by the absorption of gravitational 
waves (a problem which was recently intensively studied by Weber 1961 and later) are 
attenuated by the damping due to dissipation of energy in the elastic body. To 
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investigate such problems a knowledge of the relativistic theory for the dissipative solid 
is required. 

It is evident that, due to a lack of literature on this subject, the first step to take is to 
establish, in some simple manner, the theory of the dissipative elastic solid, as Weber 
(1961) was forced to do. However, in his treatment the dissipation is taken into account 
simply by the inclusion of a frictional damping force which is proportional to the 
velocity of vibrating particles. For such a description, thermodynamics does not exist 
and the resulting wave equation leads to a dispersion dependence which is in con- 
tradiction with classical experiments both in fluids and in solids (see KranyS 1977, to be 
referred to as I). (Usually, dissipation causes an increase in the phase speeds of the 
waves; but this is not true in Weber’s (1961) description.) Such an approach could be 
adequate, perhaps, for one- or two-dimensional bodies but not for a three-dimensional 
solid body, as pointed out by Maugin (1974a) who proposed a relativistic constitutive 
equation for the Kelvin-Voigt viscoelastic solid. The resulting equation for strain 
propagation, according to Maugin, is compatible with conventional stationary ther- 
modynamics, and is free of the defect in Weber’s equation and therefore much more 
realistic. However, besides the simplification due to the neglect of heat conduction, 
Maugin’s equation is parabolic which means that an infinite front speed for propagating 
waves is predicted. 

In accordance with the theory of relativity we believe that all possible field and/or 
material phenomena can propagate only with some finite signal velocity not exceeding 
the velocity of light in UUCUO. From the mathematical point of view this requirement can 
be fulfilled only if the system of partial differential equations describing the appropriate 
physical phenomena is hyperbolic. However, this is not true for a thermodynamically 
stationary theory: to the category of stationary theories belong, for example, the 
phenomenological fluid theory of Eckart (1940) (see also Grot and Eringen 1966). This 
theory, and its various slight modifications, apply only the minimum necessary general- 
isations in introducing dissipation, i.e. viscous stress, bulk stress and heat flux, by means 
of Navier-Newton and Fourier transport equations which are evidently stationary. 

This difficulty with stationary theories led some authors to propose more satis- 
factory mathematical systems which must evidently be non-stationary and hyperbolic at 
the same time. In classical physics, where a similar problem also existed, propositions of 
non-stationary heat transport equations emerged around 1948 (Cattaneo and others- 
see the story in I). In relativity theory, the first non-stationary heat transport equations, 
i.e. amended with a relaxation term, were proposed by KranyS (1964,1966a) who later 
(KranyS 1966b, 1967) gave the non-stationary transport equations for viscosity. The 
general proof of the hyperbolicity of the theory, using the modified heat transport 
equation, was given by Mahjoub (l969,1971a, b)and also by Boillat (1971,1972) who 
studied various alternatives to hyperbolic systems. Muller (1966, 1967) proposed 
phenomenological transport equations in a fluid including other terms besides the pre- 
viously mentioned relaxation terms, and he also showed, strictly according to non- 
equilibrium thermodynamics, that retaining systematically all second-order terms in 
the entropy balance equation, the more accurate form of the transport equations for 
dissipative fluxes can be predicted. The same result as that of Muller for a relativistic 
fluid continuum was also arrived at recently by Israel (1976). Stewart (1971,1974)used 
the ideas of Marle (1969), KranyS and Muller in his studies too. The attempt to 
generalise the constitutive transport equations in order to obtain a hyperbolic theory 
based on ‘constitutive axioms’ was made by Muller (1969, 1972), Maugin (1973a, 
1974a) and Barrabes (1975). 
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We do not want to use the direct arguments of kinetic theory in this paper dealing 
with continuum theory, but we will use phenomenological non-stationary ther- 
modynamics which is consistent with kinetic theory, as it must be, in order for 
continuum theory as applied to fluids to agree with kinetic theory. 

No doubt recent developments in kinetic theory (Grad 1949) have clarified the form 
of the transport equations for heat flux and viscosity tensor. Even if this was done only 
for a dilute gas, it gave a firm basis for the revision of the transport equations. Muller 
was able, within his approximations, to justify each term of the transport equations, 
both on the basis of phenomenological and kinetic considerations, at least in the 
classical version. In the relativistic version, the homologue of Grad's 13-moments 
method is Chernikov's (1962) 13-moment system which does not include bulk viscosity 
effects (and which was extended to the hyperbolic system by KranyS 1972) and the 
14-moment method first developed by Marle (1969). The propagation modes ac- 
cording to all those three theories, in the linearised case, are given in KranyS (1972, 
1975, 1976). This study reveals that for the last two theories there are three distinct 
non-trivial propagation modes in a gas, two for longitudinal waves and one for 
transverse waves, all well below the speed of light in vacuo. In particular the ultra- 
relativistic wavefront speeds according to Marle's 14-moment theory are respectively 
0*577c, 0-775c, and 0 .447~ .  The number 0.77% is found also in Stewart (1971) who 
seems to have used a modification of Marle's theory, but its interpretation and 
derivation is not clear. A method of applying the Muller equations to non-relativistic 
elasticity theory has recently been proposed (I). Additionally, Muller has proposed a 
relativistic fluid theory, which has been confirmed and complemented by Israel (1976) 
(see also Israel and Stewart 1976). The purpose of the present paper is to incorporate 
these ideas into the relativistic theory for an isotropic, elastic, dissipative continuous 
medium. As we will see below, this requires the inclusion of some cross-eff ect coupling 
terms in the transport equations and modification of the form of some thermodynamic 
equations such as, e.g., the Gibbs equation. 

2. Formulation of phenomenological theory for a dissipative solid 

We will use as a base the Eckart (1940) type theory which utilises a particle frame (i.e. in 
the rest frame where particles are at rest in contrast to the energy frame where flux of 
energy appears to be zero, which is the case in the Landau and Lifshitz type theory. The 
symmetrical energy-momentum tensor is defined? 

TaP = p u a u P  + ( 2 / ~ ) q ' ~ u ' ' +  w"'; upua = -1, (a, P = 0,  1,293) (2.1) 

where p is the mass density, E the specific internal energy, u a  the four-velocity vector, 
q p  the heat flux vector, and wQB the total stress tensor; we also use the 'orthogonality' 
condition with respect to U = :  

qaua = 0 ,  WPPUB = 0, ( W P B  = ,(@'). (2.2) 

Vectors and tensors fulfilling such conditions are called transverse (with respect to the 
world line) or 'three-dimensional' quantities and occasionally are marked as 

= g; +UPU' (2.3) 
l a l B  I 

wQB = [wP@I1= g , g s w q  . . . la- a P q = = q  =&39 7 

t Parentheses around a set of indices denote symmetrisation; e.g. q'"us'= f (q"ua +q8u") .  
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where = [gg], is the metric tensor on the three-dimensional hypersurface locally 
orthogonal to U,. We shall use also the following rule. If any tensor X.a@". is contracted 
with some transverse tensor Y&.. = [ Y&..IL then the following relation holds: 

x"a-l Yui3..,], = [XU.@-.],[ Yue ...I A. 

Further we shall also use the following symbols and relations 

(2.4) 

where ([Zcaa)],) is called the deviator (from the spherical tensor 5~,a[2:],) of the 
tensor [ZQBl1. 9 indicates the Lie derivative with respect to the four-vector field U,. 
(Some basic formulae are gathered in appendix 1 .) 

The fundamental equations of the theory are the conservation laws for mass, linear 
momentum and energy (i.e. first principle of thermodynamics) in its standard form, 
namely 

V, (pcup)=O or c 9 p + p V a c u a = 0 ,  (2.6) 

If, for the moment, we consider only special relativity theory and only reversible 
changes, we can set 4" = 0, and V u  = 8" and so we have five equations for the eleven 
unknowns p, U,, waB, E .  Thus we need in this case to express the six components of the 
stress tensor was via the remaining five basic unknowns (p, U,, E or T )  in order to obtain 
a determinate theory. This relation (a constitutive equation) is evidently the stress- 
strain relation. 

A dissipation-free (i.e. reversible) theory of elasticity in general relativity has been 
proposed by several authors. Due to the fact that the concept of rate of strain csaa is 
easy to put into mathematical form in general relativity in comparison with the concept 
of strain e,@, Synge (1959), and also later on with some modification, Bennoun (1964, 
1965), proposed the basic constitutive equation of elasticity which is a stress-strain 
relation (Hooke's law) in terms of rate of change of stress c9&,  and strain csaB. Later 
Rayner (1963) proposed stress-strain formulae analogous to Hooke's law Baa = c$evs. 
The direct definition of local strain e,@ in general relativity is due to Hernandez (1970): 

2& = 0 (~,LP = 0) (2.9) 
1 1 0  ea@ = dgQs - gas >; 

-LO where gas is a time-independent petr ic  tensor which describes a flat three-dimensional 
space of the natural state, and gap is the spatial metric of the body seen by a local, 
co-moving observer whose coordinate system is referred to as the local distyrted rest 
frame (LDRF), where 'distorted' refers to the possibility of a non-zero strain, gas # za, 
while the term 'rest frame' means that goi = 0. For the definition of relativistic strains, 
see also Maugin (1971) and especially Carter and Quintana (1972). Hernandez also 
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claims that the theories of Synge and Bennoun have nothing to say about static 
problems. Independently of the veracity of this statement we are allowed to use the 
concept of rate of strain cspg or absolute strain ea@ (which are mutually compatible), our 
concern being the treatment of dissipation processes, which is always a dynamical 
phenomenon. (In the static state there is no dissipation.) 

Let us define (to conform with Synge and Bennoun) the rate of strain tensor 

(2.10) 

Taking the Lie derivative of ea@ (see (2.9)) and making use of (2.9) and (A.4) we obtain 
I - L  

czeaB = 4c9gap = V ( ~ C U @ )  = csa@, ( 9 ~ 0  = [ s e a s  Id (2.11) 

which shows the compatibility of both concepts csaB and e,@; csaB having the advantage 
of being a 'three-dimensional' tensor and also a convenient function of U@ which is one 
of the basic variables of the theory. 

2.1. Constitutive equations. for dissipative transport 

For fluids the dissipative effects are due to viscosity and thermal conduction and these 
effects can be investigated analytically by starting from a phenomenological or kinetic 
theory and using suitable equations. In spite of some differences between fluids and 
solids (the behaviour in the latter being more complex and varying considerably with 
the nature of solid), phenomenological theories taking into account dissipation in terms 
of internal friction (i e. viscosity) and heat conduction are generally used. We want to 
use the same principle in our development, but instead of employing Fourier's law and 
the Meyer-Kelvin-Voigt stress-strain relation, both of which imply a parabolic system, 
we intend to adapt and use the appropriate transport equations converted into a 
non-stationary form by including relaxation and other terms in order that those 
generalisations be compatible with more exact non-stationary thermodynamics and 
which forms a hyperbolic system together with the conservation equations. 

In order to establish such a theory let us make the following postulates, which are 
similar to those used in I when the propositions of the corresponding classical theory are 
given in more detail. 

(i) First we assume (as in Voigt 1892) that the total stress tensor waB in a solid can be 
expressed as a sum of the reversible or recoverable part of the stress ea@ and the 
irreversible or dissipative part of the stress l-II"@ : 

,,,a@ = ea@ + Ua@; ea@us = 0, = 0, ea@ = e(a@), = n(a@). (2.12) 

As a consequence of this postulate, Bas, as a fully reversible perfectly elastic stress, 
possesses the elastic potential $' (the Helmholtz free energy) which is the reversible part 
of 4 = E  - qT = 4' - TAq (see (2.36)). In the following, for the sake of clarity, we limit 
ourselves only to small, so called infinitesimal deformations (i.e. linear stress-strain 
relations) although such a limitation is not necessary for the development of our thesis?. 

t More precisely one could keep the basic conservation equations (2.6)-(2.8) non-linear, or linearise them 
(but only after the transport equations have been deduced!). However the transport equations are linear in 
dissipative fluxes. 



1852 M KranyS 

(In the general (non-linear) case one proceeds as in Maugin (1974a)t.) With this in 
mind, we can write$ 

We assume, for perfectly elastic deformations, that the stress and 4' depend only upon 
the two state variables and, i.e. 

ea@ = 8"@(eYs, T), 4' = @(ears, TI. (2.14) 

Expanding $(e,@, T )  in a Taylor series about the reference point (0, To) (writing simply 
$0 for $(O, To) etc) we obtain 

1 1 1 $' - $I, = --e,&"@ + ( T -  To)$("+-e e +-eaB(T - To)C"@ 
Po 2p0 Po 

where the coefficients 

(2.15) 

are constants, therefore 

(2.17) 

From (2.13) and (2.15), for linearly thermo-elastic bodies (consistent with an in- 
finitesimal deformation), one deduces 

deaB T ] I = - [ A " B ] I + [ ~ " B y s e ~ ] l + ( T - T o ) [ C " B ] I  (2.18) 

t In the general (non-linear) case the following equation holds: 

If we consider only infinitesimal strains, i.e. (ezeE)1'2<< 1 the second term in this equation drops out and we 
obtain 

as given in (2.13) (see also Maugin 1973b, p 254 and Carter and Quintana 1972, 8 4). 
$ Equation 2$'= (9~'-  T9p')- q'2T by the use of (2.25) can be written 

1 
P 

2$' = - - tP2eae  - ~ ' Y T  

on the one hand; and also as 

on the other hand; recalling that 2ea, = [2e4Il, (see (2.11)) and considering (2.4) the relation (2.13) follows 
by comparison of both expressions for 2#'. 
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as we neglected second- and higher-order terms in eQB. When eQs = 0 and T = To, 
8”’ = [AQBII must be the residual stress in the initial reference state. Equation (2.18) 
(or ( 2 . 1 8 ~ ) )  thus emerges as a generalised Hooke’s law for a thermally coupled elastic 
solid (cf Bennoun 1965, pp 77 and 92, Barrabes 1975; see also Schmutzer 1968, p 425). 

Because [BQBY6evsli = [BaBv6]l[e,6]l = [BQBY6Iley6 where the last step is possible 
due to (2.4), we can also deduce from (2.18) the equation for the rate of change of stress, 
bearing in mind (2.17): 

+?eQ8 = [BQByb]l%?,6 + [cQBIl~ ,  (2.19) 

From the symmetry of eQs( = e(Qs)), one can, by inspection, determine the symmetries of 

Therefore [Cu’ll has six and [BQ’Y6]L has twenty-one independent components. In an 
isotropic medium, in particular, the following relation is obtained: 

the coefficients in (2.16): A“’ =A“”, C”’ = C‘”), BQBY6 = B(Q@xY6) = B(Y6xQO) 

[ B Q B Y 6 L = ~ g  LQL31Y6 g +2pg ‘ Q ( Y A 6 ) @ .  g , [AQBIL =A?’, [CQB], = - p p ,  
(2.20) 

where A and p are LamC’s constants and p is proportional to the coefficient of thermal 
expansion. Using (2.20) equation (2.18) can be rewritten as: 

-eQ’ =-A? +A~’ [e ,71+2p[eQ8] l -~ (T-  TO)?. ( 2 . 1 8 ~ )  

The reversible specific entropy is, by the second equation of (2.13) and (2..15), 

(2.21) 

which, after being subjected to the 9 derivative and using (2.17) and (2.4), leaves: 

1 
Po 

-2~’ = - [ ~ ~ ~ ] ~ ~ e ~ ~  + @)n. (2.22) 

Using the usual definition of specific heat ce at constant strain, 

(2.23) 

then ce = by (2.21) and [CUBlI  = -deuB (by (2.18)); equation (2.22) then reads 

pT9q’ = T-9eQB +pc&?T, (2.24) 
aeQB 
aT 

and expressing its left-hand side by the use of Gibbs equation for reversible change: 

pT9q’ = p 9 d +  Ba*9eQB (2.25) 

we can finally write the equation 

(2.26) 

which will be useful to transform the term p 9 ~  in (2.8). 
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The tensor nus, representing the irreversible internal friction, which we will also 

= 7rgl"p + ++, 7r =$-I;, *QB =(ne@), 7r,"=O (2.27) 

is conventionally (in the frame of stationary non-equilibrium theory) connected with 
the rate of strain tensor by the proportionality relations 

write in the form 

(2.28) 

which in fluid theory are known as Newton's law and in viscoelasticity (together with 
(2.27) and (2.18)) are used to describe the so called Voigt solid (see I, equation (2.8)). 
Such constitutive equations describe the instantaneous dissipative stress response (7r 
and nus), arising from the rate of strain (Se: and (SeuB) )  which contradict physical 
causality and must therefore be corrected. A suitable correction is assured automati- 
cally if, instead of conventional stationary thermodynamics, the more exact non- 
stationary thermodynamics in the sense described by Muller (1966, 1967) is used. 

In non-stationary thermodynamics, we do not alter the first principle, but we write 
the second principle as 

or (2.29) 

I Vas" = U where S" = cu "pq + s" 

p c 9 q + V U s " = u  and us0 
J. 

which is a statement of the entropy balance equation and of the Clausius-Duhem 
inequality, and where we have to retain explicitly all terms to order two (O(2)). 

All quantities which, in the thermodynamical equilibrium state, do not vanish (e.g. 
p, T )  are considered to be of O(0) and all quantities which vanish in thermal equilibrium 
(e.g. q", T ,  T"') as well as the derivatives of all such quantities, are considered to be of 

Such a requirement can be secured by two constitutive assumptions ((a) and (b)):  

(a) The (specific) internal entropy q (as one of the three new quantities (7, 9, a) 
appearing in the fully independent intrinsic second principle (2.29)) in a thermal 
non-equilibrium state depends explicitly, in addition to the usual variables (e.g. cap, and 
T )  for description of reversible processes, also on the dissipative fluxes characterising 
irreversible processes (i.e. g", T,  7raB),  as it must describe the irreversibility of 
non-equilibrium processes too. Therefore 

W). 
I 

7 = q(euB, T ;  401, Tu89 r). (2.30) 

In order to derive the appropriate generalised Gibbs equation we take the 9 derivative 
of (2.30) (using (2.4)): 

We also require that the dependence of q and e on the variables describing the 
reversible processes be the same as in reversible thermodynamics q', and E ' ,  i.e. 

€ = E l ,  (2.32) 

(2.33) 
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(2.34) 

Being concerned with an isotropic medium, where the dissipation can be considered as a 
random-walk process, the q may be alternatively expressed as a function of invariants 
of dissipative fluxes, so we can also write, instead of (2.30): 

77 =q(eQ@,  T ;  qQqQ2, TQBTQ& 
(2.35) 

Expanding r] in a Taylor series about the reference state q (eQB, 7'; 0,  0,O) = r]* = 7' to 
order two in the dissipative fluxes, namely 

q(eQ@, T ;  q Q q U 7  TQBrQ@, T ) - q '  

1 
= --?;(8(eQB, T)T +&.?(eus, T)qQqQ +$(eQB, T ) T " @ T ~ ~  +ir(eQB,  T ) r 2 )  

= Aq (2.36) 

(where we have denoted - (1 /T)8(eaB,  T ) =  ( a q / h ) *  etc) we can find 

(2.37) 

As the entropy of the insulated system can only increase, i.e. 

q a q ' ( e Q B ,  T )  or A q ~ - - ( 2 ~ ~ + ~ q ~ q , + ~ ~ ~ ~ . r r , ~ + ~ ~ ~ ) ~ O  (2.38) 

for arbitrary combinations of qp ,  rQ8 and T we may conclude that 

6(eQB, T )  = 0, E (eQB, T )  3 0, 6(eQ@, T ) s o ,  ?(eQB, T ) s O .  (2.39) 

Making use of relations (2.32)-(2.34), (2.37) and the first equation of (2.39), equation 
(2.3 1) representing Gibbs equation for non-stationary processes reads: 

pT2q = p 2 ~  + eQB2eQB - pEqQ [2qQII - p&QB [ 2 ~ ~ ~ ] ~  - p y ~ 2 ~ .  (2.40) 

One notices that the two first terms on the right-hand side (the only ones existing in 
reversible and also stationary irreversible thermodynamics) are of O( 1) (assuming that 
A"@ # 0 in (2.18)) while the remaining terms which are new are of O(2). 

( b )  The conductive part of the entropy flux S" (see (2.29)), according to the 
conventional irreversible thermodynamics, is proportional to only one dissipation flux, 
i.e. heat flux, which causes S" to be of O(1). Only if terms of O(2) are included is one 
able to combine all the dissipation fluxes into a vector of entropy flux. Thus a 
generalised definition of Sa may be given as 

1 
2T 

I 

I 

1 1  
S"=-(qQ - N T ~ "  -MT*@~@) (2.41) T 

where the scalar coefficients N and M may be dependent on eQB and T. 
The five new coefficients 6, B, 7, N' and M characterising the state of the medium 

have to be in conformity with the phenomenological transport equations which lead to 
the non-negative entropy production (T B 0 (see (2.29)). In other words the transport 
equations for dissipative fluxes can be deduced from the preceding equations, by the 
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supposition that U is a quadratic form of dissipative fluxes or a linear form of non-trivial 
invariants of dissipative fluxes. So, upon combining the third equation of (2.29), 
equations (2.40), (2.41) and (2.8) (together with (2.12) and (2.27)) and (2.11) retaining 
only the terms to 0(2), and using the relations 

. r r U p [ 9 e a p l l  = ~ " ' ( [ ~ e ~ p I ~ > ,  .rrap[vaq6ll = .raP([V(uqs,ll>, 
7 r a p [ 9 T a p 1 1  = T a @ ( [ 9 T a p 1 1 > ,  (2.42) 

which follow by (2.5) and (2.4) one obtains: 

UT = - . r r ( [ c 9 e ~ l I + p ~ c 9 ~ + N V , q a )  

-rap (([c9ea.S 111 + PP( [ C g T a a  1 I> + M([V(uqs,ld) 

(2.43) 

The requirement that the scalar UT produce a quadratic form in T, rap, and qa leads to 
the following assumption for the form of transport equation (writing c 9 r a p  = 7jaB etc): 

(2.44) 

(2.45) 

where the coefficients of proportionality A', h and K are the so called transport 
coefficients of bulk and shear viscosity and of thermal conductivity. We introduced also 
the notation 

7' ' p 7 ,  ,f = I p p ;  T K TpE,  (2.47) 

for the so called relaxation coefficients. With the equations (2.44)-(2.46) and (2.43) the 
Gibbs-Duhem inequality takes the desired form 

(2.48) 

The transport equations (2.44)-(2.46) contain five new coefficients (in general 
dependent on eap and T )  as compared to the conventional stationary theory; these 
are the three relaxation times (2.47) and the two cross-effect coupling coefficients 
N (heat-bulk viscosity) and M (heat-shear viscosity). The forms of the non-stationary 
transport equations (2.44)-(2.46), the Gibbs equation (2.40) and the definition (2.41) 
are in agreement with the corresponding equations deduced from relativistic kinetic 
theory (13- and 14-moment approach; see KranyS 1972, 1976). The transport equa- 
tions with N = M = 0, i.e. completed only by the relaxation terms, were proposed 
also by JSranyS (1966a, b, 1967) in order to ensure relativistic causality of the con- 
ventional parabolic theory. Maugin (1973a, 1974b) also studied these transport 
equations in order to show that relaxation terms conform with the recent 
phenomenological axiomatisation of constitutive theory. However, we do not agree 
with all his conclusions. For example, he takes issue with this author that the heat 
transport equation analogous to our equation (2.46) is not 'objective' or 'rheologically 
invariant' by which he means that for the relaxation term the form 7~94, was used 
instead of the correct form, T[cLZ~,]~  which holds if q, = qa. As far as the projection 

i 
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[ II is concerned, in KranyS (1966a) the heat flux is written as 4, = ua4+qa, (q#  0) 
so the criticism does not apply and in KranyS (1966b, 1967), in the main text, this 
omission does exist but was amended at the end of the second article. Secondly, 
replacement of 2 4 ,  by 94, is correct in the theory linearised with respect to dissipative 
fluxes which is our concern here. In this case (or if U, = constant) [24,], = 94, holds 
(see equation (3.6)). Further Maugin was not able, by his method, to confirm, for a fluid, 
the existence of a term claimed by Stewart which is analogous to our term KTM[V,TZ]~, 
whose existence is conclusively confirmed by the kinetic theory. It may appear perhaps 
surprising that we so often mention kinetic theory in talking of an elastic solid. As was 
pointed out in I, the thermal energy in a solid is transported by free electrons and 
phonons. Both are usually described as a gas of quasi-particles satisfying the 
Boltzmann equation, so we have to expect that the appropriate transport equations for 
these quasi-particles will be very similar to those obtained from the kinetic theory of a 
gas of molecules. 

The transport equations (2.44)-(2.46), in the non-relativistic limit go over into the 
corresponding classical equations (2.9)-(2.11) given in I t .  Only one small term is 
without analogy with a non-relativistic description: K T [ C ~ C U , ] J C ~  is a part of Eckart's 
relativistic temperature gradient [V,T + EBu,], which has sometimes been unjustly 
criticised (e.g. Bennoun 1965, p 68) but which is presently considered to be quite 
natural (see Maugin 1974~) .  

The resulting form of the stress-strain relation for our dissipative solid follows by 
combining equations (2.18a)' (2.44) and (2.45): 

II 1 I/ 

epB +nap + ( T o -  7giOp[n:iL + 7 [ ~ , , 1 ~  

+ 2w'[e,p]~ + (AoN - i M f i k p [ V - ~ ~ l ~ +  iiW'(,qp,I~] (2.49) 

where also (2.12) and (2.27)t have been used. Equation (2.49) represents our general- 
ised form of the idealised Maxwell-Voigt-Meyer equation of viscoelasticity 

W a p  + ~ [ W a p I 1  = d~pY6[ey61i+~apY6[eys] l  (2.50) 

which is called the Maxwell equation if Ampy6 = 0 and the Meyer-Kelvin-Voigt 
equation if .i = 0. In relativity, an equation of type (2.50) was studied by Maugin 
(1973a, 1974a) with .i = 0. For an equation of type (2.50), where the total stress wmg is 
relaxed, a thermodynamics has not yet been constructed (Eringen 1967, p 3309. We 
notice that in (2.49) only the dissipative fluxes nap are relaxed, not the reversible 
quantities like as the r81e of 'driving force' and its 'response' must not be 
interchanged since the relaxation terms, containing time derivatives, are not invariant 
under the substitution t + -t. One could also interpret equation (2.49) as a generalised 
Hooke's law for a dissipative elastic medium. 

The first law of thermodynamics (2.8) can be written as follows, if use is made of 
(2.12), (2.261, (2.321, the relation (2.18a) and (2.11) 

p ~ , c ~ + P T c ~ e ~ + n " ~ c ~ e , ~  + @ ~ ' + q 4 9 ~ , ) =  0. (2.5 1) 

t Due to slightly different notation in I we must make the substitutions T ~ I +  $Tk,, P -P 3 ~ ,  N -P $N and X-P $X. 
$ A' = 3 A ' + 2 ~ ' ,  I= 2 ~ '  where A'  and g' are moduli of viscosity which correspond to Lam& constants, were 
also used. 
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The reversible part of the pressure tensor 8"' can be written 

=pp+ga~; e = o ,  ( p = L  3eu)l  a (2.52) 

where p is the scalar isotropic pressure and e"@ is the pressure deviator (shear tensor). 
For example, in the case of a Hookean thermoelastic solid (see (2 .18~) )  we have 

p = A + p ( T - T o ) - ( A  +$p)e;; 
- (2.53) 

The case of p # 0 and e"' = 0, characterises fluid continua (called compressible if 
@/de,' # 0), which cannot resist shear tension. The case e"' # 0 and p = 0 is an example 
of purely non -fluid continua (solids) characterised by a rigidity modulus p which are 
able to withstand only a shear tension but are incompressible. In general non-fluid 
continua (solids) (which are treated in this paper) are both compressible and shear- 
resistant at the same time. 

The decomposition (2.52) can help us to determine, for example, the contribution of 
each part of 8"' in the governing equations. The equation of motion (2.7) by virtue of 
the first of the equations (2.12), and also (2.52) reads 

= - 2 p ( [ e a ~ ~ i - 1 L ~ ~  3g - 2 ~ ( [ e " @ ] ~ ) .  

( P E  +p)9u"  +(+up + V , P  +vanP") 
(2.54) 

1 
-u"(e"o + naB)t(auB, +-(gqu - u"q@gus) = 0, 

C 

where the relation p V a p  =p(u'V,up +%") has been used. We notice that the 
coefficient of acceleration C ~ C U "  contains, beside p (as in Newtonian mechanics), a 
typical relativistic factor [E + (p/p)]/c2 which is well known from the relativistic 
dynamics of fluid continua and which also appears, of course, in the general case of 
non-fluid continua. 

Upon application of the decomposition (2.52) in the Gibbs equation (2.40) (or in 
(2.25)) we see that our new term 

(2.55) 

by (2.11) and (2.6) splits into the familiar term characteristic of a fluid (the only one 
included in the original Muller theory) and a second term 8"@d;peap which represents 
the net contribution from the purely non-fluid (i.e. rigidity) properties of continua. 

3. Review of the governing equations of the theory 

We noticed that for deriving (2.43) and the transport equations (involving practically 
only terms of 0(1)), the second and first principles, both expressed by non-linear 
equations containing terms of O(2) were needed. The governing equations of our 
theory are formed now by the conservation equations (2.6), (2.7) (with (2.12), (2.18) 
and (2.27)), (2.51) and by the transport equations (2.44), (2.45) and (2.46). By virtue of 
(2.11) and the supplementary conditions given by the second equation of (2.1), (2.2) 
and the last equation of (2.27), and 7 ra~u*  = 0, we have, in the special relativity case, 14 



Relativistic elasticity of dissipative media 1859 

equations (not including the supplementary conditions) for determining the 14 
unknown quantities: 

P, uu, T, l l 9  T U B ,  4u; ( 3 . 1 )  

which form the determinate system, without recourse to the notions involved in the 
second principle. The entropy balance equation and Gibbs-Duhem inequality, are 
used only if some further, purely thermodynamical considerations, are called for. In the 
general relativity case, we have, besides the equations mentioned above, the Einstein 
field equations: 

R -1 2g& = -xTUB (3.2)  

and, besides the 14 unknowns ( 3 .  l ) ,  10 additional unknown components of the metrical 
tensor gag. 

If one intended to use the non-linear stress-strain relation (finite strain elasticity) it 
would be consistent to keep the conservation equations (2 .6) ,  (2 .7)  and (2.51) non- 
linear, i.e. involving also terms of 0 ( 2 ) ,  while the transport equations (2.44)-(2.46) 
involving terms of 0(1) remain linear at least with respect to the dissipative fluxes. 

Consistently with our assumption of infinitesimal strain leading to the linear 
stress-strain relation we wish now, for the sake of simplicity, to retain only the terms of 
0(1) in all conservation equations, which corresponds, to all intents and purposes, to 
the linearisation of these equations. All coefficients of the differential equations will be 
considered as having constant values corresponding to the reference state, i.e. in the 
coefficients we set 

(3 .1a)  

and we will drop the suffix eq or 0. 

motion. Equation ( 2 . 1 8 ~ )  by virtue of (2.11) can be written as 
Before writing down the governing equations it is necessary to treat the equation of 

2'9"' = -2~s"'  +(-As;+@fl)@ (3 .3)  

which, after differentiating, leaves: 
I I  I I  

V 3 9 " '  -@6'2T= -2pVusUB - AGBs;  = -pVuVuuB - ( p  +A)VBV,uY (3.4)  

where the term ( - h s ; + @ 2 T ) V u P  was neglected as being of 0 ( 2 ) ,  and the first 
equation of (2 .5)  and (2.10) were used. Applying the c 2  derivative on equation (2.7) 
(or (2.54)),  where the free indices were lowered, dropping terms of O ( 2 )  and using (3.4),  
the second equation of ( A . 2 )  and symbols C ~ T  = ?i etc, we obtain the desired equation 
of motion 

In order to perform a linearisation of the governing equations for special relativity 
theory, one needs to realise that the 2 derivative of all tensors of O( 1 )  reduces itself to 
the 9 5 U"& derivative as is evident from the formulae in appendix 1, and V u  +a". 
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Also, for example 

(3.6) 
1 
-[qa]I = g:9qu = 9qa + uauu(?o = 9 q a  - u&LBu'=9qp 
C 

where the first equation of (2.2) was used and the term q a u "  was neglected as it is of 
O(2). Similarly one deduces, also, 

I I 
[bap 11 = c%ap, C v d ,  = aar ,  = (a,au,,>, . . . .  (3.7) 

Keeping this in mind we can write the 14 governing equations of our theory (i.e. (2.6), 
(3 .9 ,  (2.51), (2.44), (2.45) and (2.46)) in linearised form with differentiated sup- 
plementary conditions : 

c g p  + p a a d  = 0, (3.8) 
I I  I I  

@ + p E ) c ~ 9 2 C u ~  - (CL + A  )a*a&u - paa aaCU* + p c g i ~ ~  + C 9 i a r a ~  
C 2  

+c&%+lic292q@ C =o, (3 * 9) 

pc,c9T+PTcaaua +a&= = 0, (3.10) 

(3.11) 

+ + C ~ P  +~((i(aUB))+M(a(aqB))) = 0, (3.12) 

(3.13) 

ua9ua = 0, ua9qa = 0, ua9raB = 0, = O .  (3.14) 

1 0 I a  
T+T°C9b?rf3h (a  cu ,+Na~q")=O,  

I 
qa +Tc9qa + K{[iaT+(T/c2)c9ccua]+ N T a a r + M T ~ u ~ a " } =  0,  

4. The 14 linearised governing equations and their Fourier transforms 

We will apply the present theory to a study of propagation modes (in the frame of 
special relativity theory) in an unbounded space filled with an immobile isotropic 
dissipative elastic medium in thermodynamical equilibrium and in mechanical equili- 
brium, and in which there is aforceddisrurbance of very small amplitude. Therefore, we 
assume that, for this problem, the governing equations (3.8)-(3.14), linearised near this 
equilibrium reference state, can be used. 

In seeking a solution to the system of 14 linear partial differential equations 
(3.8)-(3.14), we assume each of the unknown functions (3.1) to have the form of a 
propagating plane waue : 

(4.1) Q - Q, = 6 e-iK**,. 

This corresponds to a Fourier transform in time and space. K" is the four-wavevector, 
in the local rest frame K" = (o / c ,  k ) ,  and the phase velocity is defined as W = o/ lk l .  
The relation K"K, b 0 holds, i.e. K" is a space-like or null vector which is the necessary 
condition for having W S c. An invariant decomposition of the four-wavevector into 
longitudinal and transverse parts with respect to the world line of the appropriate mass 
element is 

II I J. I J -  I I  
K"=-u"K+K", K" = naK, nana = +l. (4.2) 
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Then the frequency and three-wavevector can be expressed in the invariant form 

In order to study the polarisation of waves in a simple manner, we choose a special local 
rest frame with x 3  pointing in the direction of propagation of the plane wave, i.e. 

= (0; 0, 0, l) .  As we wish to investigate forced sound waves (a description of sound 
propagation arising, e.g., from an oscillating piston), o will always be real while the 
wavevector repains complex. The real part of the refractive index of the wave 
K* = c/  W = cK/w corresponds to a propagation phenomenon and Im(X*) to the 
attenuation. 

Inserting into the set of our equations (3.8)-(3.14) for each of the unknow? 
functions (3.1) a plane wave solution (4.1), one obtains (as bQ-.-iKBQ, 
C ~ Q  + - iod,  2~ -. -ilt..S): 

ob +pK,cU*" = 0, (4.4) 

upiip = 0, ud" = 0, u,7ip@ = 0, 73: = 0. (4.10) 

The equations (4.4)-(4.9) form a set of twenty-one homogeneous equations in the 
unknowns (3.1) of which only fourteen are independent because of (4.10). With 
nu = (0; 0, 0, l), i.e. K" = (0; 0, 0, K )  and u p  = (1; 0, 0,O) (immobile medium), gas = 

(-1; 1,  1, l), go@ = (0; 1,  1, l), conditions (4.10) require 

i 

I 

(4.11) 

Due to the constraint 7i: = 0 of (4.10), 7r11 = -d2- 7r33 is not an independent quantity 
and will not be considered in our system of equations (see also KranyS 1976, 1972 for 
details about the same technique). 

* O P  - Go = 0, io = 0, 7l -0. 

Taking all these formulae into account, equations (4.4)-(4.9) together with: 

(4.12) 

can be put in the matrix form (4.13). 
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II 
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The algebraic system of 14 homogeneous equations (4.13) has a non-trivial solution 
if and only if the appropriate determinant of this system vanishes, namely (because 
three equations are of second order in (4.13), our problem is really of order 17): 

I 
A17(W, w ) = o ,  ( W  = w / K ) .  (4.14) 

This is the characteristic equation, and its solutions (eigenvalues W = W(w)) define the 
dispersion dependence of the complete set of eigenmodes belonging to our system. 

As is evident from (4.13) A17 is equal to the product of three lower order 
determinants A17 = A5A5A7. Hence, instead of the dispersion equation (4.14), we need 
investigate only the two much simpler equations 

As=O and A7 = 0, (4.15) 

the first corresponding to waves with transverse polarisation and the second to waves 
with longitudinal polarisation. 

5. Transverse waves 

5.1. General case (14- or 13-equation description) 

The possible phase velocities W = w / K  with a transverse polarisation are given, using 
the first equation of (4.15) and (4.13) in dimensionless form, by the equation: 

I 

where 
*“ 

&2 
* 
W 

c2  * w2- 1 
CI 

2 1 -  c 1 -  c.L hB -AiAI- 
2 V 

-AI- 
2 E  

= O  

This equation can be reduced to the form 

* *  * *  * 
AT= constant x W( W2 - W:)( W 2  - Wi) = 0 

where 

u 2  = c,T. 

(5.3) 

(5.4) 
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and? 

This result is in agreement with the corresponding non-relativistic one because E + c 2  
and [ + 1 (see I, (4.5))$. Only the last term on the right-hand side of equation (5.5) and 
(5.6) are new and purely relativistic and both disappear in the classical limit for which 
E + c 2 .  The zero root of equation (5.3) has to be associated with the mass flow velocity, 
which was chosen in our case to be zero. Then we have two modes$ for transverse 
waves. Because W :  2 W?I, we will call the I-wave a fast transverse (or quasi-mechani- 
cal) wave and the 11-wave a slow transverse (or quasi-thermal) wave, whose existence is 
mainly due to heat conduction, although we admit that such an intuitive distinction is 
not justifiable rigorously. 

From the complex phase velocities WI,II, depending on the wave frequency through 
the expressions B ( w )  and z ( w )  (see (4.12)), both the effective phase speed W + =  
w/Re K and the coefficient of absorption w/Im K can be deduced. 

* *  

I I 

51.1. Limiting case when w + 00. The wavefront speed (signal speed) V for each wave 
mode can be found either from the complex W or from the real phase velocity W' as a 
limit: 

V = o lim +a0 W ( w ) =  o-m Iim W[B(w) ,  Z ( w ) ,  N ( w ) ]  (5 .8)  

but B ( a ) = z ( m ) = N ( m ) =  1 by (4.12). 

5.1.2. Limiting case when K ,  h; A '+ 0. If the thermal conductivity coefficient decreases 
to zero: K + 0 which also means T + 0 by the third equation of (2.47), then because of 
equation (2.46) qm + 0, which eliminates heat conduction (and also equation (2.46)) 
from the description. The same applies to h and A O, so 

i. All the quantities occurring here, i.e. constants z,, U, E ,  A,, . . . have to be evaluated in the initial unstrained 
state of the material: T = TO and e,, = 0 (see (3.1 a)) .  Those coefficients (e.g. E )  depend however on the fixed 
reference temperature To which may vary depending on the circumstances. 

$ I n 1  &= W/c,,whereashere &= W/c = ~ ~ W / ~ , t h e r e f o r e A ( ~ ) = c * : A , / c ~ , ~ ( ~ ) = ~ ~ a n d ~ ( ~ ) = c ~ ~ ~ / c * : .  
5 We call W2 a mode, which means one wave propagating in the positive (+ W )  and one in the negative sense 
(- W), with the same speeds. 

* A  
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5.1.3. Limiting case when w -0. For this case 

or equivalently lzI-00, (Bl+00, IN~+co (5.10) 

but these results are those for an adiabatic dissipation-free case, because the simul- 
taneous transitions 

7-0, ?-0, T 0 3 O ,  

also lead to the conditions (5.10), which, according to (5.9), lead to a cancellation of all 
dissipative fluxes and therefore to the adiabatic state. 

5.2. The adiabatic case (5-equation description) 

This case is included as a special, dissipation-free case of wave propagation when w + 0 
or by (5.10), when /zI 3 00 and + 00 (IN/ +CO need not be considered as transverse 
waves are independent of N). Then from (5.5)-(5.7) and (5.4) it follows that 

5.3. The case with shear viscosity only ( 1  U-equation description) 

This case with no heat conduction follows from (5.5)-(5.7) when we allow 121 +CO (see 
(5.9)). Doing this, we obtain: 

(5.12) 

The wavefront speed (5 .8 )  of the fast mode I (5.12) is 

a value greater than that in the adiabatic case and this value is very sensitive to the shear 
viscosity relaxation time which, when set to zero (usually the case in conventional 
parabolic theories), results in infinite signal speed. It can be shown, and it is evident 
already from (5.13) that for any frequency w > 0, W'(w)a Wadiabatic. 

5.4. The case without viscosity (8-equation description) 

This case with heat conduction is described if we allow IBI +Co. On doing this, we 
obtain : 

In the corresponding non-relativistic case (see I) the result is the same as in the adiabatic 
case, meaning that heat conduction does not produce dispersion in this approximation; 
however this is not the case for the relativistic description. 
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6. Longitudinal waves 

6.1. General case ( 1  4 -equation description ) 

The possible phase velocities W = w / K  with longitudinal polarisation are given by the 
following equation, using the second equation of (4.15) and equation (4.13) (in 
dimensionless form) : 

I 

L L L L 
W W 2  

L 
W 1 

V 2  
P’-T 

C L  

?U‘‘ r;.B 

1 -AoN2 1 

3 v  
2- 
-A 
3 

-A0 
3 3 v  

v 2  C:. VCL ATW A 3  UT AN% hz 
C C C C 

= O  

C L  

A = ~ M c L v  (6.2) 

,I=-- 

2 v = c,T, 8 = @ ‘ 2 - -  v 2  c 2  p’ = --, P 
c:. E ’  PCe 

K 1  - h l  AQ=--  A’ 1 
X = ~NcLv, A = - 7 ,  

7 P C L  To pc:.’ 7 pcecZ‘ 
This equation can be reduced to the form 

L L  L L  L 
A4=constantx W3(W2-  W:)(W2-  W;J = 0 

where 
L w&=L[B* J(B2-4AC)~  

2A 

and (see the second footnote on p 1864) 

(6.3) 

(6.4) 
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2 

+ -AAo[ 1 N 2  + (: - NJS)  2]8 + 9 2 (A - N)' } . 
3 E 

(6.7) 

This result is also in agreement with the corresponding non-relativistic one (see I, 
equations (5.5)-(5.7)) except for several new, purely relativistic terms, which all 
disappear in the classical limit in which E -* c 2  (see (A.7)). 

From (6.3) we see that there are once again two longitudinal modes, and because of 

W :  3 W:, (from (6.4)), we call the I-wave a fast longitudinal wave or 'quasi-mechanical 
wave' (or sound wave) and the 11-wave a slow wave or 'quasi-thermal wave'. Let us turn 
to some special cases. 

L L  

6.2. The adiabatic case (5-equation description) 

This case can be obtained according to (5.10) as a limiting case for IBI + CO, 1fi1+ 00 and 
121 + W .  Taking those limits, using (6.4)-(6.7), we obtain 

where S is the so called thermoelastic (dimensionless) coupling coefficient. 
In the formula (6.8), valid for thermoelastic continua (see equation (2.53)) there is a 

factor [ E  + (p/p)] - '  (where p = A is an initial pressure) which is well known from the 
relativistic description of a fluid, namely of the ideal monatomic gas (where p = pRT)  
for which the phase speed is that given by Synge's (1957)formula (316) (cf KranyS 1972, 
equation (2.32))1 

( 6 . 8 ~ )  

The simpler result W: = ::/e2 follows from (6.8) for the 'uncoupled' case when the 
stress is not directly influenced by heating (p' = 0 and 6 = 0). This simpler result is 
identical with that of Carter (1973) for the perfect solid under high pressure based on 

L 

sophisticated considerations. The result (6.8) with p' = 0 and p = O  was given by Synge 
(1 959). 

In-the non-relativistic limit (kTo<< me2 or y + 00; see (A.7)) the factor 

(writing E = c 2 +  AE) reduces to c z  and the formula (6.8) formally coincides with the one 
well known from classical physics, where the residual pressure p does not appear. 

t For a monatomic relativistic gas (with three degrees of freedom) we have, for example i = c 2 [ G ( y ) -  (lly)], 
where G =  KJK2 and K,(y) are the Kelvin-Bessel functions; so that limy+- d - - c * [ l + ~ ( l / y ) ]  and 
lim,+oi - c 2 ( 3 / y )  = 3 ( k T / m )  = 3RT. (y is defined by (A.6).) 
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6.3. The case when dissipation is due only to viscosity (1 1 -equation description) 

This case follows from the general formulae (6.4)-(6.7) with 121 + o;, (i.e. elimination of 
heat flux; see (5.9)) which leads to the expressions 

telling us that the slow, quasi-thermal mode disappears and the main acoustical mode 
survives giving, as a result of bulk and shear viscosity, a higher phase velocity than the 
adiabatic sound speed. 

If we eliminate either bulk viscosity (IN1 + a) (resulting in a 13-equation descrip- 
tion) or shear viscosity (IBI +CO) (leading to a 9-equation description) both propagation 
modes survive, and only the dispersion curves are modified accordingly. 

6.4. The case when dissipation is due to heat conduction only (8-equation description) 

This case follows from (6.4)-(6.7) with lBl+m and lNl+w leading to the two 
non-trivial modes 

(6.10) A 
z 

where 

(6.11) 

which, in the non-relativistic case (i.e. E + cz,  (A.7) and U * < <  c 2 ,  c:<< c2) ,  change (due to 
$ + l ,  #.$+l and,$+l)toequation(5.11)inI. 

7. The hyperbolicity of the theory 

The requirement that our system of 14 partial differential equations (3.8)-(3.13) be 
hyperbolic can be formulated (Courant and Hilbert 1966, $ 8  3.3, 3.6) in the following 
way, If the characteristic equation of the system under consideration, which in our case 
is the characteristic polynomial AI, = (AT)’A? (AT and A) being given by (5.3) and (6.3) 
respectively) in the limit o + CO: 

lim A17=constantx lim ( @ - & : ) 2 ( $ ? - & ? I ) 2 @ ( ~ -  h:)(+- kA)*=O 
w-rm o+m 

(7.1) 
possesses only real and finite solutions for all roots, then the system is hyperbolic. First, 
five zero roots W 5  = 0, as well as & ~ I I  (given by (5.4) and W&, (given by (6.4)) fulfill 
this condition of reality and finiteness as long as < 00, Ao< 00 and A c CO. This is 
fulfilled if and only if we have simultaneously (cf (5.2) and (6.2)): 

L 

F > O ,  T0>0, ?BO, (7.2) 
because all the coefficients in (5.4) and (6.4) are real. 

If only one of the relaxation constants is equal to zero then all the propagation wave 
modes have infinite wavefront speeds. We notice that the relaxation constants (7.2) are 
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definitely responsible for the finiteness of wavefront speeds and therefore for guaran- 
teeing the causality principle and can therefore not be neglected. 

8. Comparison with other theories and results 

This will help us to determine the differences and weaknesses of those particular 
theories. As an example, let us compare the parabolic equation for longitudinal strain 
waves based on the relativistic Kelvin-Voigt stress-strain relation proposed by Maugin 
(1974a, equation (4.3) in which we disregarded driving gravitational field) with our 
corresponding results in 0 6.3. The dispersion law for propagation modes in Maugin's 
case (4" = 0, 6 = 0, and p = 0) can be deduced from (6.9) putting 7' = 7 = N = M = 0. 
Keeping in mind that (by virtue of (4.12) and (6.2)) 

we easily find that: 

This formula is valid if heat conduction can be neglected and if one is interested only in 
the dispersion dependence for not too high a frequency range, i.e. fo << 1, TOW << 1. Of 
course the limit (5.8),  i.e. o +a applied to the expression (8.2) shows that the speed of 
the wavefront is infinite, proving the non-hyperbolicity of utilised theory. In the 
classical limit E -* c2  we obtain the well known formulae (in Maugin's formula (4.3) the 
factor 1 / ~  is missing). Yet one has to realise that besides the fast, longitudinally 
polarised wave, there is also a fast, transverse wave (5.12) and that, due to our neglect of 
heat conduction, the slow II-modes did not survive in this particular case. 

Therefore, in spite of some weaknesses in Maugin's results, we must confirm his 
criticism of Weber's (1961) equation (8.34) which is hyperbolic but which leads to an 
incorrect dispersion dependence (see I, 0 7.1). 

Let us consider again Maugin's case, but with 7rus = O('4 = 0) to show how the terms 
responsible for dissipation give rise to a phase and signal speed which is higher than is 
the adiabatic speed. The equations (3.9)-(3.11) governing this case will contain only i3 
(of all a,) and with d3d3 = A, cu3 = U, and c9u = z i  they will read 

I I I  

(8.3) 

(8.4) 

$ U  - (2p + A)Au + &7i = 0, T = constant 
C 

1 013 T + T ~ + + ~ A  a U = O .  
I I 

Applying ~ $ 3 8 3  derivative on equation (8.4) and then expressing a37i by the use of (8.3) 
one obtains 
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(and a similar equation for w, if desired). As in this equation only one unknown appears 
(i.e. U )  it is completely independent of the remaining unknowns (n, T, p )  and one may 
conclude that 

in the adiabatic case, i.e. if A' = 0, TO = 0 (by the first equation of (2.47)) 

(by (2.39) and (2.47)) if A > 0. The expression (8.7) is obtained by comparing the 
principal part (i.e. the part containing the highest order derivatives) with the wave 
equation, being in conformity with (6.9), and representing the square of the signal speed 
which is also the speed of propagation of the characteristic surfaces associated with 
equation (8.5). The dispersion dependence W'(w ) then satisfies the inequality: 

but in the case of Weber's equation we have V = We, 3 W'(w). 
If our theory of continua is specialised to a gas it is not identical with the linearised 

form of Marle's (1969) theory, as it is evident on comparison of the energy-momentum 
tensors for both theories. We utilised Eckart's tensor in conformity with Israel's (1976) 
proposition in order to obtain the governing equation in the same form as Muller (1966) 
and Israel did, i.e. in a form which is slightly more symmetrical than in Marle's 
formalism. However, at present we are not able to say which choice is more realistic. 

As a peripheral result of our study of modes in dissipative elastic continua, we have 
obtained a more general expression for the adiabtic mode than that contained in 
Carter's (1973) work. 

9. Correspondence between the coefficients for different phase states 

We can hardly expect that a conventional material can exist in the solid state for 
relativistic temperatures  TO >> mc2 or even kTo = mc2) but rather it must exist in the 
gaseous state (disregarding dissociation of molecules) which has no rigidity (e"' = 0) 
and therefore p = 0. So one can expect, purely formally, that solid matter, upon 
increase in temperautre of the reference state To, will have a decreasing rigidity 

modulus p which finally becomes zero at temperatures TO 2 TO where the matter will 
exist only in the fluid state or perhaps even in the gaseous state. We will not enter into 
the physics of phase transitions but we will show that the form (structure) of the phase 
velocity or pressure in terms of coefficients like A, p, . . . , i.e. W(A, p , .  . . ) or 
Wk[A, 0, . . . I ,  v[A, p, . . . I )  persists for the different phase states of the matter in 
question: and hence we can follow each coefficient and its sometimes multiple mani- 
festations for the solid, liquid or gaseous state. 

* 
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The coefficients of isothermal compression x and isometric thermal tension U may 
be defined as: 

Let us evaluate these terms for a Hookean thermoelastic solid (2.53), for a Van der 
Waals fluid, i.e. when p = [ p R T / ( l -  bp)] -up2, and for an ideal gas, i.e. when p = pRT. 
We obtain: 

Expanding p = p @ ,  T )  about the reference point (Po, To) in order to find the linearised 
form of p consonant to that of ( 2 . 1 8 ~ )  

1 
Po 

P(TO + AT, PO + AP ) = PO + VAT +PAP, Po = P b o ,  To) (9.3) 

and passing from the variable p to e;, by virtue of the second equation of (2.6): 
-Ap = pAe; = p(e;  -O), equation (9.3) reads 

p(T,  e ; )=po+ 47’ -  Td-xe; ,  (9.4) 

which is formally identical with the first equation of (2.53). By means of (9.4) we obtain 

the general expression for the fluid part of the pressure tensor pp = ea8 - qa8 for 
solid, liquid or gaseous state of matter depending only on which values of the 
coefficients x and Y obtained from (9.2) are used. 

Now by virtue of the sixth equation of (6.2), equation (6.8), with CL + O  (i.e. also 
ce + cv) ,  takes the form (we have dropped subscript 0): 

On the other hand Synge’s formula for the ideal gas ( 6 . 8 ~ )  taking into account equation 
(9.2) takes the form 

which coincides with that of (9.5). This natural correspondence of form (CF) of 
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expression (9.5) with (9.6) or (9.4) with the first equation of (2.53) for different phase 
states would not be possible, for example, if the thermoelastic effect were disregarded, 
as in Carter (1973). 

It is also easy to follow CF in the case of other coefficients characterising dissipation 
phenomena. We see, e.g., that h = 2p' and S A o  = A ' + & I  also have the meaning of shear 
and bulk viscosity coefficients respectively in the case of a fluid, in which case the explicit 
form (derived from kinetic theory) can be found in the literature. 

The demonstrated existence of CF together with (9.2) can be used for a rough 
estimate of values as Xsolid, Vsolid, . . . in terms of Xfluid, Vfluid, . . . or even xgas, vgas, . . . as 
these latter are better known in the high temperature region. 

9.1. Extraction of fluid-continua normal modes 

If one makes, in our non-fluid continua theory the substitutions (cf equation (9.2)) 

CL + o (i.e. Pp = o), A j x f l u i d ,  p Vfluid, (and 9 e ;  = -*), (9.7) 

then this theory reduces itself to Muller's or Israel's original fluid theory with the 
equation of state p =p(T ,  p )  in the linearised form 

1 
P o  

and the results of §§ 5 and 6 valid for linearised elasticity theory reduce to the ones for 
linearised fluid. In that case the adaptation of results of 0 6 is trivial; but for transverse 
polarised waves (0 6) where p + 0 requires that c: = 0 we must introduce the (primed) 
quantities which are independent of p, in order to visualise the dependence of our 
expressions for p : 

P 

p = P O +  vfluid(T- TO)+Xfluid-(P -PO), (9.8) 

1 
PAL, AI2 i -  ---A?. 

cc 
Upon inserting these expressions into equations (5.4)-(5.7) and allowing p + 0 we 
easily obtain 

and 

(9.10) 

We see that one of the transverse modes has disappeared as is expected for fluid 
continua. The result (9.10) is formally very similar to that in KranyS (1976, equation 
(2.3)) but not identical. Allowing 121 +CO in the expression (9.10) we obtain 

c 
-= 0, (or = 0). 
A 

(9.11) 

which conforms with equation (2.3) mentioned above and which shows that the 
difference we referred to must have its origin in the heat conduction treatment. 
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10. Conclusions 

A phenomenological general relativistic theory for a dissipative elastic solid whose 
equations form a hyperbolic system is proposed. The non-stationary transport equa- 
tions for dissipative fluxes containing new cross-effect terms, as required for com- 
patibility with the entropy principle expressed by the balance equation with all 
second-order terms, have been adopted in order to guarantee physical causality and the 
possibility of describing fast, transient processes. In the adaptation of Muller’s or 
Istrael’s theory, which is a fluid theory, to elasticity, the principal step was the inclusion 
of only the purely irreversible (or dissipative) part of the stress tensor in the transport 
equations, which is consistent with non-equilibrium irreversible thermodynamics. 
There has never been a theory of elasticity, before this one, containing a stress-strain 
relation with a stress relaxation compatible with thermodynamics. The theory formed 
from the system of 14 partial differential equations (in the case of special relativity), of 
total order 17, is hyperbolic. Five new transport coefficients appear in the transport 
equations, in contrast to conventional parabolic theories; however, three of them 
(relaxation times) have been investigated previously, in connection with some simpler 
constitutive equations. 

The complete system of special relativistic propagation modes has been determined 
from the 14 linearised equations. There are four mutually distinct non-trivial pro- 
pagation modes, two for longitudinal waves, and two for transverse waves. Those 
modes for relativistic dissipative solids are predicted here for the first time, and their 
non-relativistic limits agree with those deduced by KranyS (1977). The wavefront of 
each mode propagates with a finite velocity, affording direct proof of the hyperbolicity 
of the theory. The wavefront speeds of the modes (being always higher than those for 
dissipation-free propagation), represent the speed of propagation of the characteristic 
surfaces on which a discontinuity of some quantities can occur, and therefore represent 
weak shock wave speeds, or, more exactly, shock precursor speeds. However the values 
of wavefront speeds cannot be evaluated numerically if we base ourselves exclusively 
on our phenomenological theory. So we gave at least some suggestions on how to 
obtain rough asymptotic expressions for the phenomenological coefficients, 

As the relativistic effects are small in elastic bodies in the conditions presently 
accessible, there is no literature about the experimental investigation of such effects to 
date, so that direct comparison of the present theory with experiments is impossible. 
However in the case of classical theory there exists a great deal of literature on this 
subject and the theory proposed in I, which appears as a non-relativistic limit of that 
proposed here, is at least in qualitative agreement with experiments (see I). It would be 
desirable to have experimental values of the five newly introduced constants for a 
quantitative comparison between theory and experiment, for various solids. 
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Appendix 1. Some auxiliary formulae and definitions 

In deriving and handling the constitutive equations the Lie derivative 2' with respect of 
U* has been used (see, e.g. Schouten 1954). It is also possible to work with even more 
suitable convected derivatives (see Carter and Quintana 1972f'). For example 

9 T a B  =9TaB + TauVB~u+ TupV,u"; 9 s = 9 s ;  (A.1) 

9 w K  " 9 W K  - wUV,uK; TwA E 9wA f WpVAu' (A.2) 
By (A.2): 

3 4 "  = 924, - uwv,ua = 0; S u a  = 9 u a  + u,VaucI = 9u, (A.2a) 

and then by the first equation of (A.1): 

by the third equation of (2.5) and the second and third equations of (2.3). From (A.4) 
by definition (2.3), it follows that 

I 
(i-YgaB)Ua = [v(~uB)IIu~ = 0. (A.5) 

Appendix 2. Remark about the classical and ultra-relativistic limit 

To find the classical (i.e. non-relativistic) or ultra-relativistic limit for the 
phenomenological coefficient is not possible unless those coefficients are sufficiently 
specified or if an estimate of their size can be made. For example, for 'not too low' and 
'not too high' temperature, according to the equipartition theorem, the internal energy 
of a solid can be estimated as E=nmc2+n3kT so that the specific internal energy is 
E = E/p=c2[1 +3(kT/mc2)] (see footnote to 0 6.2). By the classical (or low tem- 
perature) limit we understand the case when the effective dimensionless temperature 
y is low, i.e. -1  

in that case E becomes the relativistic rest energy and we always obtain: 

2 l i m E = c .  
V-rW 

t In the part of the text dealing with the constitutive equations we operate with 2 derivatives which, when 
applied on tensors of 0(1) like e, lead to contributions of O(2) which terms can often be neglected in 
comparison with other lower order terms in the governing equations. 
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